Abstract
Kashmir Valley has been witnessing erratic snowfall events in recent autumns which severely impacted apple orchards and harvests. Here, we combine remotely sensed data and field observations to map snowfall distribution and snow depths during the recent snowfall events in November 2018 and November 2019. Besides, we used ERA-5 reanalysis climate datasets to investigate the causes of these erratic snowfall events, pointing to an early arrival of Western Disturbances (WD) to the area. Analysis of these untimely snowfall episodes indicates that snow depths varied from 5–122 cm and 31–152 cm during the 2018 and 2019 snowfall events, respectively. In turn, satellite data analysis reveals that the apple orchards cover roughly 9.8% (1329 km2) of the entire surface of Kashmir Valley, out of which 32.6% were mildly to severely damaged by snow. The areas in South Kashmir suffered the most from the untimely snowfall with an area affected estimated to ~264 km2, followed by North Kashmir (~151 km2) and Central Kashmir (18 km2). The snowfall caused substantial harvest losses in orchards ranging from 4–50% with an average of ~35%. The geopotential analysis from the ERA-5 dataset provides insights into the synoptic weather patterns leading to the snowfall events and point to a trough in the high-troposphere (200 mb), along with a col at lower levels (850 mb) over the Kashmir Valley from November 2–5, 2018. The lower levels (850 mb) experienced intense cyclonic circulation which favored advection of moisture from the Arabian Sea during the November 6–7, 2019, snowfall event. The large economic losses related to early arrival of WD led to a virtual grounding of the horticultural sector in 2018 and 2019. Therefore, more baseline research is critically needed along with a comprehensive evaluation of the suitability of horticulture as an economically viable sector that is being promoted over the Kashmir region, also under climate change.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献