Salinity Stress Mitigation Using Encapsulated Biofertilizers for Sustainable Agriculture

Author:

El Semary Nermin Adel Hussein,Alouane Mohamed Helmi HadjORCID,Nasr Olfa,Aldayel Munirah F.ORCID,Alhaweti Fatimah H.,Ahmed Faheem

Abstract

The harmful effect of salinity stress on crops needs to be mitigated. Therefore, the application of microbial inoculum in combination with nanomaterials and methyl salicylate was investigated. Initially, different seeds were exposed to salinity levels treated with variable microbial treatments using different modes of applications. The microbial treatments included application of cyanobacterial strain Cyanothece sp. and the rhizobacterium Enterobacter cloacae, alone or in combination with one another, and a final treatment using combined microbial inoculum supplied with methyl salicylate. Later, different nanomaterials were used, namely, graphene, graphene oxide, and carbon nanotubes in combination with biofertilizers on the highest salinity level. The nanomaterial with microbial treatment and methyl salicylate were applied partly as a mixture in soil and partly as capsules. Results showed that salinity stress had a drastic inhibitory effect on growth parameters, especially at −5 MPa level. Nonetheless, the microbial treatments significantly alleviated the deleterious effect of salinity stress, especially when combined with methyl salicylate. When the nanomaterials were added to biofertilizers at highest salinity level, the inhibitory effect of salinity was mostly alleviated. Smart use of synergistic biofertilizers alongside the right nanomaterial, both encapsulated and in soil, would allow for mitigation and alleviation of inhibitory effect of salinity.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference55 articles.

1. Effects of hydrogen peroxide on the germination and early seedling growth of barley under NaCl and high temperature stresses

2. Salt Stress and Phytohormone (ABA)-Induced Changes in Germination, Sugars and Enzymes of Carbohydrate Metabolism in Sorghum bicolor (L.) Moench Seeds;Thakur;J. Agric. Soc. Sci.,2005

3. Impact of saline water stress on nutrient uptake and growth of cowpea

4. Genes and salt tolerance: bringing them together

5. Reviews Biofertilizers for Sustainability;Brahmaprakash;J. Ind. Inst. Sci.,2012

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3