Modelling Excess Mortality in Covid-19-Like Epidemics

Author:

Burda ZdzislawORCID

Abstract

We develop an agent-based model to assess the cumulative number of deaths during hypothetical Covid-19-like epidemics for various non-pharmaceutical intervention strategies. The model simulates three interrelated stochastic processes: epidemic spreading, availability of respiratory ventilators and changes in death statistics. We consider local and non-local modes of disease transmission. The first simulates transmission through social contacts in the vicinity of the place of residence while the second through social contacts in public places: schools, hospitals, airports, etc., where many people meet, who live in remote geographic locations. Epidemic spreading is modelled as a discrete-time stochastic process on random geometric networks. We use the Monte–Carlo method in the simulations. The following assumptions are made. The basic reproduction number is R0=2.5 and the infectious period lasts approximately ten days. Infections lead to severe acute respiratory syndrome in about one percent of cases, which are likely to lead to respiratory default and death, unless the patient receives an appropriate medical treatment. The healthcare system capacity is simulated by the availability of respiratory ventilators or intensive care beds. Some parameters of the model, like mortality rates or the number of respiratory ventilators per 100,000 inhabitants, are chosen to simulate the real values for the USA and Poland. In the simulations we compare ‘do-nothing’ strategy with mitigation strategies based on social distancing and reducing social mixing. We study epidemics in the pre-vacine era, where immunity is obtained only by infection. The model applies only to epidemics for which reinfections are rare and can be neglected. The results of the simulations show that strategies that slow the development of an epidemic too much in the early stages do not significantly reduce the overall number of deaths in the long term, but increase the duration of the epidemic. In particular, a hybrid strategy where lockdown is held for some time and is then completely released, is inefficient.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference56 articles.

1. The Mathematical Theory of Infectious Diseases;Bailey,1975

2. Infectious Diseases of Humans: Dynamics and Control;Anderson,1992

3. The Mathematics of Infectious Diseases

4. An Introduction to Mathematical Modeling of Infectious Diseases;Li,2018

5. Strategies for containing an emerging influenza pandemic in Southeast Asia

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary game dynamics and the phase portrait diversity in a pandemic scenario;Applied Mathematics and Computation;2024-08

2. Ethical frameworks should be applied to computational modelling of infectious disease interventions;PLOS Computational Biology;2024-03-21

3. Ethical Frameworks Should Be Applied to Computational Modelling of Infectious Disease Interventions;SSRN Electronic Journal;2024

4. Predicting the outbreak of epidemics using a network-based approach;European Journal of Operational Research;2023-09

5. Monte Carlo model for simultaneous spread of two variants of a virus in a population;APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE’22): Proceedings of the 48th International Conference “Applications of Mathematics in Engineering and Economics”;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3