Abstract
We develop an agent-based model to assess the cumulative number of deaths during hypothetical Covid-19-like epidemics for various non-pharmaceutical intervention strategies. The model simulates three interrelated stochastic processes: epidemic spreading, availability of respiratory ventilators and changes in death statistics. We consider local and non-local modes of disease transmission. The first simulates transmission through social contacts in the vicinity of the place of residence while the second through social contacts in public places: schools, hospitals, airports, etc., where many people meet, who live in remote geographic locations. Epidemic spreading is modelled as a discrete-time stochastic process on random geometric networks. We use the Monte–Carlo method in the simulations. The following assumptions are made. The basic reproduction number is R0=2.5 and the infectious period lasts approximately ten days. Infections lead to severe acute respiratory syndrome in about one percent of cases, which are likely to lead to respiratory default and death, unless the patient receives an appropriate medical treatment. The healthcare system capacity is simulated by the availability of respiratory ventilators or intensive care beds. Some parameters of the model, like mortality rates or the number of respiratory ventilators per 100,000 inhabitants, are chosen to simulate the real values for the USA and Poland. In the simulations we compare ‘do-nothing’ strategy with mitigation strategies based on social distancing and reducing social mixing. We study epidemics in the pre-vacine era, where immunity is obtained only by infection. The model applies only to epidemics for which reinfections are rare and can be neglected. The results of the simulations show that strategies that slow the development of an epidemic too much in the early stages do not significantly reduce the overall number of deaths in the long term, but increase the duration of the epidemic. In particular, a hybrid strategy where lockdown is held for some time and is then completely released, is inefficient.
Subject
General Physics and Astronomy
Reference56 articles.
1. The Mathematical Theory of Infectious Diseases;Bailey,1975
2. Infectious Diseases of Humans: Dynamics and Control;Anderson,1992
3. The Mathematics of Infectious Diseases
4. An Introduction to Mathematical Modeling of Infectious Diseases;Li,2018
5. Strategies for containing an emerging influenza pandemic in Southeast Asia
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献