Optimising Ion Conductivity in NdBaInO4-Based Phases

Author:

Chen Manyu1ORCID,Li Cheng2ORCID,Zhu Kai1,Wang Jieyu1,Liu Sida1,Kong Weina1,Ban Zifa1,Shen Chao1

Affiliation:

1. Avic Composite Corporation Ltd., Beijing 101300, China

2. Neutron Scattering Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USA

Abstract

Based on the previous work conducted by Fujii et al., NdBaInO4 compounds present modest oxide-ion conductivities. Therefore, it has been an attractive system of significant interest. In this study, we attempted to partially substitute Ca for Nd and the total electrical conductivity was successfully improved due to the generation of oxygen vacancies. The synthesis, crystal structure, density, surface topography, and electrical properties of NdBaInO4 and Ca-doped NdBaInO4 have been studied, respectively. NdBaInO4 and 10% and 20% molar fractions of Ca-doped NdBaInO4 were synthesized through solid-state reactions. The crystal structure of them was obtained from Le Bail refinement of the XRD pattern, giving the result of the monoclinic structure, which belongs to P21/c space group. The highest total electrical conductivity of 4.91 × 10−3 S cm−1 was obtained in the Nd0.9Ca0.1BaInO3.95 sample at a temperature of 760 °C in the dry atmosphere and the activation energy was reduced from 0.68 eV to 0.58 eV when the temperature was above 464 °C (737 K) after doping the NdBaInO4 with a 0.1 molar fraction of Ca2+. Moreover, the total conductivity of Nd0.9Ca0.1BaInO3.95 in the wet atmosphere at moderate temperature was relatively higher than that in the dry atmosphere, which suggests that potential proton conduction may exist in wet atmospheres. In addition, the oxygen diffusion coefficients of Nd0.9Ca0.1BaInO3.95 (D* = 1.82 × 10−8 cm2/s, 850 °C) was about two times higher than that of Nd0.8Ca0.2BaInO3.90 (D* = 7.95 × 10−9 cm2/s, 850 °C) and was increased significantly by two orders of magnitude when compared with the oxygen diffusion coefficient of the undoped NdBaInO4 (D* = 8.25 × 10−11 cm2/s, 850 °C).

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3