A Model-Free Deep Reinforcement Learning-Based Approach for Assessment of Real-Time PV Hosting Capacity

Author:

Suchithra Jude1ORCID,Robinson Duane A.1ORCID,Rajabi Amin2

Affiliation:

1. Australian Power Quality Research Centre, University of Wollongong, Wollongong 2522, Australia

2. DIgSILENT Pacific, Sydney 2000, Australia

Abstract

Assessments of the hosting capacity of electricity distribution networks are of paramount importance, as they facilitate the seamless integration of rooftop photovoltaic systems into the grid, accelerating the transition towards a more carbon neutral and sustainable system. This paper employs a deep reinforcement learning-based approach to evaluate the real-time hosting capacity of low voltage distribution networks in a model-free manner. The proposed approach only requires real-time customer voltage data and solar irradiation data to provide a fast and accurate estimate of real-time hosting capacity at each customer connection point. This study addresses the imperative for accurate electrical models, which are frequently unavailable, in evaluating the hosting capacity of electricity distribution networks. To meet this challenge, the proposed approach utilizes a deep neural network-based, data-driven model of a low-voltage electricity distribution network. This proposed methodology incorporates model-free elements, enhancing its adaptability and robustness. In addition, a comparative analysis between model-based and model-free hosting capacity assessment methods is presented, highlighting their respective strengths and weaknesses. The utilization of the proposed hosting capacity estimation model enables distribution network service providers to make well-informed decisions regarding grid planning, leading to cost minimization.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3