The Performance Evaluation of a Hybrid System Combining an Alkaline Fuel Cell with an Inhomogeneous Thermoelectric Generator

Author:

Zhang Chenjun1,Li Hanqi23,Zhang Xi1,Shen Man1,Jin Xu1

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

2. Doerr School of Sustainability Energy Sciences Engineering Department, Stanford University, 397 Panama Mall, Stanford, CA 94305, USA

3. SLB Software Technology Innovation Center (STIC), 2700 Sand Hill Rd, Menlo Park, CA 94025, USA

Abstract

To harness the full potential of the exhaust heat produced by an alkaline fuel cell (AFC), a novel coupling system that combines an AFC with an inhomogeneous thermoelectric generator (ITEG) is proposed. Detailed models of both the AFC and ITEG are developed, accounting for various irreversible losses. Following model validations, mathematical expressions for the power output density (POD) and energy efficiency (EE) of the hybrid system are derived. Though performance comparisons, the hybrid system’s effectiveness and competitiveness are demonstrated. Our calculation results reveal that the hybrid system achieves a 31.19% increase in its maximum POD and 54.61% improvement in its corresponding EE compared to that of the standalone AFC. Furthermore, numerous parametric studies are conducted. Some findings indicate that the POD of the hybrid system can be improved by elevating the operating temperature of the AFC and the environmental temperature, and that it can be optimized using the geometric characteristics of an ITEG. However, the EE of the hybrid system gains improvement via increasing the operating temperature of the AFC or decreasing both the environmental temperature and geometric characteristics of the ITEG. Additionally, the coefficient of the spatial inhomogeneity of the ITEG determines the optimal operating current density of the AFC. These insights offer valuable guidance for the integration and operation of practical hybrid systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3