Optimally Splitting Solar Spectrums by Concentrating Solar Spectrums Splitter for Hydrogen Production via Solid Oxide Electrolysis Cell

Author:

Lang Shaocheng1ORCID,Yuan Jinliang1ORCID,Zhang Houcheng2

Affiliation:

1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China

2. College of New Energy, Ningbo University of Technology, Ningbo 315211, China

Abstract

The concentrating solar spectrums splitter (CSSS)-driven solid oxide electrolysis cell (SOEC) is an attractive technology for green hydrogen production. The CSSS mainly comprises a concentrating photovoltaic (CPV), which converts sunlight with shorter wavelengths into electricity, and a concentrating solar collector (CSC), which converts the remaining sunlight into heat. However, the optimal splitting of the solar spectrums is a critical challenge that directly impacts the efficiency and normal operation of the SOEC. To address this challenge, a mathematical model integrating the CSSS with the SOEC is developed based on principles from thermodynamics and electrochemistry. By analyzing the requirements of electricity and heat for the SOEC, the model determines the optimal configuration and operational parameters. The results show that the anode-supported type, higher operating temperature, larger inlet flow rate of water, higher operating pressure of the SOEC, higher operating temperature of the CSC, and larger electric current of the CPV contribute to allocating more solar spectrums to the CSC for heat generation. However, the greater effectiveness of the heat exchangers, higher operating temperature, and larger optical concentration ratio of the CPV exhibit contrasting effects on the spectrum allocation. The obtained results provide valuable theoretical guidance for designing and running the CSSS for hydrogen production through SOEC.

Funder

National Key Research and Development Project of China

Ningbo major special projects of the Plan “Science and Technology Innovation 2025”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3