Use of Transient Time Response as a Measure to Characterize Phononic Crystal Sensors

Author:

Villa-Arango Simón,Betancur David,Torres Róbinson,Kyriacou Panayiotis

Abstract

Phononic crystals are periodic composite structures with specific resonant features that are gaining popularity in the field as liquid sensors. The introduction of a structural defect in an otherwise periodic regular arrangement can generate a resonant mode, also called defect mode, inside the characteristic band gaps of phononic crystals. The morphology, as well as the frequency in which these defect modes appear, can give useful information on the composition and properties of an analyte. Currently, only gain and frequency measurements are performed using phononic crystal sensors. Other measurements like the transient response have been implemented in resonant sensors such as quartz microbalances showing great results and proving to be a great complimentary measure to the gain and frequency measurements. In the present paper, a study of the feasibility of using the transient response as a measure to acquire additional information about the analyte is presented. Theoretical studies using the transmission line model were realized to show the impact of variations in the concentration of an analyte, in this case, lithium carbonate solutions, in the transient time of the system. Experimental realizations were also performed showing that the proposed measurement scheme presents significant changes in the resulting data, indicating the potential use of this measure in phononic crystal sensors. This proposed measure could be implemented as a stand-alone measure or as a compliment to current sensing modalities.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3