EARS-DM: Efficient Auto Correction Retrieval Scheme for Data Management in Edge Computing

Author:

Fan KaiORCID,Yin Jie,Zhang Kuan,Li Hui,Yang Yintang

Abstract

Edge computing is an extension of cloud computing that enables messages to be acquired and processed at low cost. Many terminal devices are being deployed in the edge network to sense and deal with the massive data. By migrating part of the computing tasks from the original cloud computing model to the edge device, the message is running on computing resources close to the data source. The edge computing model can effectively reduce the pressure on the cloud computing center and lower the network bandwidth consumption. However, the security and privacy issues in edge computing are worth noting. In this paper, we propose an efficient auto-correction retrieval scheme for data management in edge computing, named EARS-DM. With automatic error correction for the query keywords instead of similar words extension, EARS-DM can tolerate spelling mistakes and reduce the complexity of index storage space. By the combination of TF-IDF value of keywords and the syntactic weight of query keywords, keywords who are more important will obtain higher relevance scores. We construct an R-tree index building with the encrypted keywords and the children nodes of which are the encrypted identifier FID and Bloom filter BF of files who contain this keyword. The secure index will be uploaded to the edge computing and the search phrase will be performed by the edge computing which is close to the data source. Then EDs sort the matching encrypted file identifier FID by relevance scores and upload them to the cloud server (CS). Performance analysis with actual data indicated that our scheme is efficient and accurate.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EStore: A User-Friendly Encrypted Storage Scheme for Distributed File Systems;Sensors;2023-10-17

2. Edge computing: A systematic mapping study;Concurrency and Computation: Practice and Experience;2023-05-15

3. Service agent networks in cloud manufacturing: Modeling and evaluation based on set-pair analysis;Robotics and Computer-Integrated Manufacturing;2020-10

4. Nanosystems, Edge Computing, and the Next Generation Computing Systems;Sensors;2019-09-19

5. Multi-Source Heterogeneous Core Data Acquisition Method in Edge Computing Nodes;2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC);2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3