Monitoring Single-Phase LV Charging of Electric Vehicles

Author:

Kuwałek PiotrORCID,Wiczyński GrzegorzORCID

Abstract

The paper presents the results of the monitoring process of the charging of an electric vehicle battery pack. Battery pack charging with a capacity of 58kWh was monitored in a single-phase 230V/50Hz circuit. The slow charging system used was configured to obtain a current of 10A. During monitoring, the focus was on the recognition of the charging, considering the impact of this process on power quality and, consequently, on the reliability of electrical machines. Research results show that the monitored charges are one-, two-, or three-stage processes. The variations in the currents, power, and higher harmonic contents were observed. The effects of such variations depend on the properties of the power grid at the point of connection of the charging system. Knowledge of the variation of the voltages, currents, and active and reactive power allows for the determination of the requirements of the measuring equipment used for charging the monitoring, including the selection of discrimination/averaging time of monitored quantities. The research results also indicate the need for continuous monitoring of the power quality in the power supply circuit of electrical loads, e.g., electrical machines. Continuous monitoring supports the diagnostics of electrical machines and allows the appropriate measures to increase their reliability.

Funder

Ministry of Education and Scienc

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laboratory Setup for Testing Low-Frequency Disturbances of Power Quality;2024 IEEE 18th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG);2024-06-24

2. Power Quality Problem for Single–Phase Low–Voltage Charging of Electric Vehicles;2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG);2023-12-03

3. Induction Motors under Voltage Fluctuations and Power Quality Standards;IEEE Transactions on Energy Conversion;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3