Adaptively Secure Efficient (H)IBE over Ideal Lattice with Short Parameters

Author:

Zhang YuanORCID,Liu YuanORCID,Guo Yurong,Zheng Shihui,Wang Licheng

Abstract

Identity-based encryption (IBE), and its hierarchical extension (HIBE), are interesting cryptographic primitives that aim at the implicit authentication on the users’ public keys by using users’ identities directly. During the past several decades, numerous elegant pairing-based (H)IBE schemes were proposed. However, most pairing-related security assumptions suffer from known quantum algorithmic attacks. Therefore, the construction of lattice-based (H)IBE became one of the hot directions in recent years. In the setting of most existing lattice-based (H)IBE schemes, each bit of a user’s identity is always associated with a parameter matrix. This always leads to drastic but unfavorable increases in the sizes of the system public parameters. To overcome this issue, we propose a flexible trade-off mechanism between the size of the public parameters and the involved computational cost using the blocking technique. More specifically, we divide an identity into l′ segments and associate each segment with a matrix, while increasing the lattice modulo slightly for maintaining the same security level. As a result, for the setting of 160-bit identities, we show that the size of the public parameters can be reduced by almost 89.7% (resp. 93.8%) while increasing the computational cost by merely 5.2% (resp. 12.25%) when l′ is a set of 16 (resp. 8). Finally, our IBE scheme is extended to an HIBE scheme, and both of them are proved to achieve the indistinguishability of ciphertexts against adaptively chosen identity and chosen plaintext attack (IND-ID-CPA) in the standard model, assuming that the well-known ring learning with error (RLWE) problem over the involved ideal lattices is intractable, even in the post-quantum era.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identity-Based Online/Offline Encryption Scheme from LWE;Information;2024-09-04

2. Efficient iNTRU-based public key authentication keyword searchable encryption in cloud computing;Journal of Systems Architecture;2024-09

3. Adaptive Secure Homomorphic Encryption Scheme;2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT);2024-04-26

4. Anti-Quantum Lattice-Based Ring Signature Scheme and Applications in VANETs;Entropy;2021-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3