The Effects of Suillus luteus Inoculation on the Diversity of Fungal Communities and Their Structures in the Soil under Pinus massoniana Located in a Mining Area

Author:

Yu Peiyi,Ning Chen,Chen Jingzhen,Zhu Fan,Sun Yujing,Shen Airong,Zeng Wenbin,Jiang Lijuan

Abstract

As important decomposers and plant symbionts, soil fungal communities play a major role in remediating heavy-metal-polluted soils. However, the diversity and structures of fungal communities generally remain unclear in mining areas. This study aimed to assess the rhizospheric fungal-community composition of Masson pine (Pinus massoniana) in the lead-zinc mining area of Suxian District, Hunan Province, China. This experiment undertook the following three treatments: Masson pine inoculated with or not inoculated with Suillus luteus, and bulk soil without plants as a control. The results thereof showed that inoculation of ectomycorrhizal fungi could enlarge plants’ capability to absorb heavy metals and secrete soil enzymes. The richness and diversity of fungi in the rhizospheric soil were significantly higher than of those in the bulk soil (p < 0.05), but no significant difference was noted between the rhizospheric soils inoculated with and not inoculated with ectomycorrhizal (ECM) fungi as the community structure changed. The rhizospheric fungi belonged to 6 phyla, 25 classes, 65 orders, 115 families, and 150 genera, and the dominant phyla were Chytridiomycota (50.49%), Ascomycota (38.54%), and Basidiomycota (9.02%). Through use of LEfSe and heatmapping, the relative abundances of Suillus, Paraglomus, Agaricus, and Tulasnella were found to be the highest in the soil with ECM fungus inoculation. RDA showed that the community structure nearly changed with ECM-fungus inoculation; this was significantly related to soil water content, the carbon–nitrogen ratio, bulk density, available potassium, and soil enzymes. Altogether, inoculation with ECM fungi may change the habitation environments of microorganisms and dominant fungi in soil, providing keystone screenings in heavy-metal-contaminated mining areas.

Funder

Scientific and Technological Innovation Plan of Higher Education Institutions of Shanxi Province

Key Research and Development Project of Hunan Province

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3