Fretting Fatigue Behavior under Tension–Bending Mixed-Mode Loading

Author:

Zhu Xiaodong1,Chen Xuejun1

Affiliation:

1. Department of Applied Mechanics, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China

Abstract

The mixed-mode loading fretting fatigue caused by the complex geometry of components and combinations of boundary conditions is a common failure mechanism in engineering components, which can dramatically reduce fatigue life. In this paper, a cylinder-on-flat numerical model was established to investigate tension–bending mixed-mode fretting fatigue. The finite element method in conjunction with two criteria, plane parameters McDiarmid (MD) and Smith–Watson–Topper (SWT), were used to evaluate the effects of mode angle, oblique loading, and stiffness ratio on the contact width, the maximum equivalent stress of the specimen, the surface stress, the fretting damage initiation location, and the extent of the damage initiation. The results indicate that the extent of fretting damage increases with the mode angle, and the characterization parameters are sensitive to smaller mode angles. The contact width, peak surface stress, maximum damage parameters, and damage initiation location can be effectively adjusted by the stiffness ratio. The findings may provide insights into fretting fatigue behavior under complex loading conditions, potentially contributing to enhanced structural safety and reliability for tension–bending mixed-mode loading.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3