IAE-KM3D a 3D Object Detection Method Based on an Improved KM3D Network

Author:

Sun Yang1,Li Song1,Wang Haiyang2,Tian Bin3ORCID,Li Yi1

Affiliation:

1. College of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China

2. Jizhong Energy Fengfeng Group Company Limited Mechanical and Electrical Department, Handan 056038, China

3. Institute of Automation, Chinese Academy of Sciences Beijing, Beijing 100000, China

Abstract

Deep learning-based 3D target detection methods need to solve the problem of insufficient 3D target detection accuracy. In this paper, the KM3D network is selected as the benchmark network after the experimental comparison of current mainstream algorithms, and the IAE-KM3D network algorithm based on the KM3D network is proposed. First, the Resnet V2 network is introduced, and the residual module is redesigned to improve the training capability of the new residual module with higher generalization. IBN NET is then introduced to carefully integrate instance normalization and batch normalization as building blocks to improve the model’s detection accuracy in hue- and brightness-changing scenarios without increasing time loss. Then, a parameter-free attention mechanism, Simam, is introduced to improve the detection accuracy of the model. After that, the elliptical Gaussian kernel is introduced to improve the algorithm’s ability to detect 3D targets. Finally, a new key point loss function is proposed to improve the algorithm’s ability to train. Experiments using the KITTI dataset conclude that the IAE-KM3D network model significantly improves detection accuracy and outperforms the KM3D algorithm regarding detection performance compared to the original KM3D network. The improvements for AP2D, AP3D, and APBEV are 5%, 12.5%, and 8.3%, respectively, and only a tiny amount of time loss and network parameters are added. Compared with other mainstream target detection algorithms, Monn3D, 3DOP, GS3D, and FQNet, the improved IAE-KM3D network in this paper significantly improves AP3D and APBEV, with fewer network parameters and shorter time consumption.

Funder

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3