Boosting the Performance of LLIE Methods via Unsupervised Weight Map Generation Network

Author:

Ji Shuichen1,Xu Shaoping2ORCID,Xiao Nan2,Cheng Xiaohui2,Chen Qiyu2,Jiang Xinyi2ORCID

Affiliation:

1. School of Information Engineering, Nanchang University, Nanchang 330031, China

2. School of Mathematics and Computer Sciences, Nanchang University, Nanchang 330031, China

Abstract

Over the past decade, significant advancements have been made in low-light image enhancement (LLIE) methods due to the robust capabilities of deep learning in non-linear mapping, feature extraction, and representation. However, the pursuit of a universally superior method that consistently outperforms others across diverse scenarios remains challenging. This challenge primarily arises from the inherent data bias in deep learning-based approaches, stemming from disparities in image statistical distributions between training and testing datasets. To tackle this problem, we propose an unsupervised weight map generation network aimed at effectively integrating pre-enhanced images generated from carefully selected complementary LLIE methods. Our ultimate goal is to enhance the overall enhancement performance by leveraging these pre-enhanced images, therewith culminating the enhancement workflow in a dual-stage execution paradigm. To be more specific, in the preprocessing stage, we initially employ two distinct LLIE methods, namely Night and PairLIE, chosen specifically for their complementary enhancement characteristics, to process the given input low-light image. The resultant outputs, termed pre-enhanced images, serve as dual target images for fusion in the subsequent image fusion stage. Subsequently, at the fusion stage, we utilize an unsupervised UNet architecture to determine the optimal pixel-level weight maps for merging the pre-enhanced images. This process is adeptly directed by a specially formulated loss function in conjunction with the no-reference image quality algorithm, namely the naturalness image quality evaluator (NIQE). Finally, based on a mixed weighting mechanism that combines generated pixel-level local weights with image-level global empirical weights, the pre-enhanced images are fused to produce the final enhanced image. Our experimental findings demonstrate exceptional performance across a range of datasets, surpassing various state-of-the-art methods, including two pre-enhancement methods, involved in the comparison. This outstanding performance is attributed to the harmonious integration of diverse LLIE methods, which yields robust and high-quality enhancement outcomes across various scenarios. Furthermore, our approach exhibits scalability and adaptability, ensuring compatibility with future advancements in enhancement technologies while maintaining superior performance in this rapidly evolving field.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3