An Application for Aesthetic Quality Assessment in Photography with Interpretability Features

Author:

Rubio Perona FernandoORCID,Flores Gallego María JuliaORCID,Puerta Callejón José Miguel

Abstract

Automatic aesthetic quality assessment is a computer vision problem in which we quantify the attractiveness or the appealingness of a photograph. This is especially useful in social networks, where the amount of images generated each day requires automation for processing. This work presents Aesthetic Selector, an application able to identify images of high aesthetic quality, showing also relevant information about the decisions and providing the use of the most appropriate filters to enhance a given image. We then analyzed the main proposals in the aesthetic quality field, describing their strengths and weaknesses in order to determine the filters to be included in the application Aesthetic Selector. This proposed application was tested, giving good results, in three different scenarios: image selection, image finding, and filter selection. Besides, we carried out a study of distinct visualization tools to better understand the models’ behavior. These techniques also allow detecting which areas are more relevant within the images when models perform classification. The application also includes this interpretability module. Aesthetic Selector is an innovative and original program, because in the field of aesthetic quality in photography, there are no applications that identify high-quality images and also because it offers the capability of showing information about which parts of the image have affected this decision.

Funder

Regional Government of Castile-La Mancha

Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference46 articles.

1. A Fast Learning Algorithm for Deep Belief Nets

2. A Survey on Transfer Learning

3. Imagenet classification with deep convolutional neural networks;Krizhevsky,2012

4. Very deep convolutional networks for large-scale image recognition;Simonyan;arXiv,2014

5. Going deeper with convolutions;Szegedy;arXiv,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3