Irrigation Water Allocation at Farm Level Based on Temporal Cultivation-Related Data Using Meta-Heuristic Optimisation Algorithms

Author:

Saeidian Bahram,Mesgari Mohammad Saadi,Pradhan BiswajeetORCID,Alamri Abdullah M.

Abstract

The present water crisis necessitates a frugal water management strategy. Deficit irrigation can be regarded as an efficient strategy for agricultural water management. Optimal allocation of water to agricultural farms is a computationally complex problem because of many factors, including limitations and constraints related to irrigation, numerous allocation states, and non-linearity and complexity of the objective function. Meta-heuristic algorithms are typically used to solve complex problems. The main objective of this study is to represent water allocation at farm level using temporal cultivation data as an optimisation problem, solve this problem using various meta-heuristic algorithms, and compare the results. The objective of the optimisation is to maximise the total income of all considered lands. The criteria of objective function value, convergence trend, robustness, runtime, and complexity of use and modelling are used to compare the algorithms. Finally, the algorithms are ranked using the technique for order of preference by similarity to ideal solution (TOPSIS). The income resulting from the allocation of water by the imperialist competitive algorithm (ICA) was 1.006, 1.084, and 1.098 times that of particle swarm optimisation (PSO), bees algorithm (BA), and genetic algorithm (GA), respectively. The ICA and PSO were superior to the other algorithms in most evaluations. According to the results of TOPSIS, the algorithms, by order of priority, are ICA PSO, BA, and GA. In addition, the experience showed that using meta-heuristic algorithms, such as ICA, results in higher income (4.747 times) and improved management of water deficit than the commonly used area-based water allocation method.

Funder

University of Technology Sydney

King Saud University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3