Investigation of the Clinical Value of Four Visualization Modalities for Congenital Heart Disease

Author:

Lee Shen-yuan1,Squelch Andrew2ORCID,Sun Zhonghua13ORCID

Affiliation:

1. Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6845, Australia

2. School of Earth and Planetary Sciences, Faculty of Science & Engineering, Curtin University, Perth, WA 6845, Australia

3. Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6845, Australia

Abstract

Diagnosing congenital heart disease (CHD) remains challenging because of its complex morphology. Representing the intricate structures of CHD on conventional two-dimensional flat screens is difficult owing to wide variations in the pathologies. Technological advancements, such as three-dimensional-printed heart models (3DPHMs) and virtual reality (VR), could potentially address the limitations of viewing complex structures using conventional methods. This study aimed to investigate the usefulness and clinical value of four visualization modalities across three different cases of CHD, including ventricular septal defect, double-outlet right ventricle, and tetralogy of Fallot. Seventeen cardiac specialists were invited to participate in this study, which was aimed at assessing the usefulness and clinical value of four visualization modalities, namely, digital imaging and communications in medicine (DICOM) images, 3DPHM, VR, and 3D portable document format (PDF). Out of these modalities, 76.4% of the specialists ranked VR as the best for understanding the spatial associations between cardiac structures and for presurgical planning. Meanwhile, 94.1% ranked 3DPHM as the best modality for communicating with patients and their families. Of the various visualization modalities, VR was the best tool for assessing anatomical locations and vessels, comprehending the spatial relationships between cardiac structures, and presurgical planning. The 3DPHM models were the best tool for medical education as well as communication. In summary, both 3DPHM and VR have their own advantages and outperform the other two modalities, i.e., DICOM images and 3D PDF, in terms of visualizing and managing CHD.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3