Observer-Based State Estimation for Recurrent Neural Networks: An Output-Predicting and LPV-Based Approach

Author:

Wang Wanlin1,Chen Jinxiong1,Huang Zhenkun1

Affiliation:

1. School of Science, Jimei University, Xiamen 361021, China

Abstract

An innovative cascade predictor is presented in this study to forecast the state of recurrent neural networks (RNNs) with delayed output. This cascade predictor is a chain-structured observer, as opposed to the conventional single observer, and is made up of several sub-observers that individually estimate the state of the neurons at various periods. This new cascade predictor is more useful than the conventional single observer in predicting neural network states when the output delay is arbitrarily large but known. In contrast to examining the stability of error systems solely employing the Lyapunov–Krasovskii functional (LKF), several new global asymptotic stability standards are obtained by combining the application of the Linear Parameter Varying (LPV) approach, LKF and convex principle. Finally, a series of numerical simulations verify the efficacy of the obtained results.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Reference35 articles.

1. Cellular neural networks: Application;Chua;IEEE Trans. Circuits Syst.,1998

2. Cichocki, A., and Unbehauen, R. (1993). Neural Networks for Optimization and Signal Processing, Wiley.

3. Hopfield neural networks for optimization: Study of the different dynamics;Joya;Neurocomputing,2002

4. Hopfield neural networks for affine invariant matching;Li;IEEE Trans. Neural Netw.,2001

5. Object recognition using multilayer Hopfield neural network;Yong;IEEE Trans. Image Process.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3