Validation of a Probabilistic Prediction Model for Patients with Type 1 Diabetes Using Compositional Data Analysis

Author:

Cabrera Alvis1ORCID,Biagi Lyvia2ORCID,Beneyto Aleix1ORCID,Estremera Ernesto1ORCID,Contreras Iván1ORCID,Giménez Marga34ORCID,Conget Ignacio34ORCID,Bondia Jorge45ORCID,Martín-Fernández Josep Antoni6ORCID,Vehí Josep14ORCID

Affiliation:

1. Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17003 Girona, Spain

2. Campus Guarapuava, Federal University of Technology–Paraná (UTFPR), Guarapuava 85053-525, Brazil

3. Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain

4. Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain

5. Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, 46022 València, Spain

6. Department of Computer Science, Applied Mathematics and Statistics, University of Girona, 17003 Girona, Spain

Abstract

Glycemia assessment in people with type 1 diabetes (T1D) has focused on the time spent in different glucose ranges. As this time reflects the relative contributions to the finite duration of a day, it should be treated as compositional data (CoDa) that can be applied to T1D data. Previous works presented a tool for the individual categorization of days and proposed a probabilistic transition model between categories, although validation has hitherto not been presented. In this study, we consider data from eight real adult patients with T1D obtained from continuous glucose monitoring (CGM) sensors and introduce a methodology based on compositional methods to validate the previously presented probability transition model. We conducted 5-fold cross-validation, with both the training and validation data being CoDa vectors, which requires developing new performance metrics. We design new accuracy and precision measures based on statistical error calculations. The results show that the precision for the entire model is higher than 95% in all patients. The use of a probabilistic transition model can help doctors and patients in diabetes treatment management and decision-making. Although the proposed method was tested with CoDa applied to T1D data obtained from CGM, the newly developed accuracy and precision measures apply to any other data or validation based on CoDa.

Funder

Autonomous Government of Catalonia

University of Girona

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3