A Fuzzy Plug-and-Play Neural Network-Based Convex Shape Image Segmentation Method

Author:

Zhang Xuyuan1ORCID,Han Yu2ORCID,Lin Sien2,Xu Chen2ORCID

Affiliation:

1. College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China

2. College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China

Abstract

The task of partitioning convex shape objects from images is a hot research topic, since this kind of object can be widely found in natural images. The difficulties in achieving this task lie in the fact that these objects are usually partly interrupted by undesired background scenes. To estimate the whole boundaries of these objects, different neural networks are designed to ensure the convexity of corresponding image segmentation results. To make use of well-trained neural networks to promote the performances of convex shape image segmentation tasks, in this paper a new image segmentation model is proposed in the variational framework. In this model, a fuzzy membership function, instead of a classical binary label function, is employed to indicate image regions. To ensure fuzzy membership functions can approximate to binary label functions well, an edge-preserving smoothness regularizer is constructed from an off-the-shelf plug-and-play network denoiser, since an image denoising process can also be seen as an edge-preserving smoothing process. From the numerical results, our proposed method could generate better segmentation results on real images, and our image segmentation results were less affected by the initialization of our method than the results obtained from classical methods.

Funder

National Natural Science Foundation of China

The HD Video R & D Platform for Intelligent Analysis and Processing in Guangdong Engineering Technology Research Centre of Colleges and Universities

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3