The Two Stage Moisture Diffusion Model for Non-Fickian Behaviors of 3D Woven Composite Exposed Based on Time Fractional Diffusion Equation

Author:

Yu Hang1ORCID,Zhu Chenhui1,Yao Lu1,Ma Yan2,Ni Yang3,Li Shenkai1,Li Huan1,Liu Yang1,Wang Yuming1

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

2. School of Textile and Clothing, Nantong University, Nantong 226019, China

3. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China

Abstract

The moisture diffusion behaviors of 3D woven composites exhibit non-Fickian properties when they are exposed to a hydrothermal environment. Although some experimental works have been undertaken to investigate this phenomenon, very few mathematical works on non-Fickian moisture diffusion predictions of 3D woven composites are available in the literature. To capture the non-Fickian behavior of moisture diffusion in 3D woven composites, this study first utilized a time fractional diffusion equation to derive the percentage of moisture content of a homogeneous material under hydrothermal conditions. A two-stage moisture diffusion model was subsequently developed based on the moisture diffusion mechanics of both neat resin and 3D woven composites, which describes the initial fast diffusion and the long-term slow diffusion stages. Notably, the model incorporated fractional order parameters to account for the nonlinear property of moisture diffusion in composites. Finally, the weight gain curves of neat resin and the 3D woven composite were calculated to verify the fractional diffusion model, and the predicted moisture uptake curves were all in good agreement with the experimental results. It is important to note that when the fractional order parameter α < 1, the initial moisture uptake will become larger with a later slow down process. This phenomenon can better describe non-Fickian behavior caused by initial voids or complicated structures.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

rojects from Nantong city

Undergraduate Innovation Training Program

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3