New Applications of Faber Polynomial Expansion for Analytical Bi-Close-to-Convex Functions Defined by Using q-Calculus

Author:

Wang Ridong1,Singh Manoj2ORCID,Khan Shahid3,Tang Huo1,Khan Mohammad Faisal4ORCID,Kamal Mustafa4

Affiliation:

1. School of Mathematics and Computer Sciences, Chifeng University, Chifeng 024000, China

2. Department of Mathematics, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia

3. Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan

4. Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia

Abstract

In this investigation, the q-difference operator and the Sălăgean q-differential operator are utilized to establish novel subclasses of analytical bi-close-to-convex functions. We determine the general Taylor–Maclaurin coefficient of the functions in this class using the Faber polynomial method. We demonstrate the unpredictable behaviour of initial coefficients a2, a3 and investigate the Fekete–Szegő problem a3−a22 for the subclasses of bi-close-to-convex functions. To highlight the connections between existing knowledge and new research, certain known and unknown corollaries are also highlighted.

Funder

the Natural Science Foundation of the People’s Republic of China

the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region

the Natural Science Foundation of Inner Mongolia of the People’s Republic of China

the Higher School Foundation of Inner Mongolia of the People’s Republic of China

the Program for Key Laboratory Construction of Chifeng University

the Research and Innovation Team of Complex Analysis and Nonlinear Dynamic Systems of Chifeng University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference55 articles.

1. Close-to-convex schlicht functions;Kaplan;Mich. Math. J.,1952

2. A proof of the Bieberbach conjecture;Acta Math.,1985

3. Duren, P.L. (1983). Grundlehren der Mathematischen Wissenschaften, Springer.

4. On a coefficient problem for bi-univalent functions;Lewin;Proc. Am. Math. Soc.,1967

5. Brannan, D.A., and Cluni, J. Aspects of contemporary complex analysis. Proceedings of the NATO Advanced study Institute, University of Durham, Durham, UK, 29 August–10 September 1979.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3