A Novel EM-Type Algorithm to Estimate Semi-Parametric Mixtures of Partially Linear Models

Author:

Skhosana Sphiwe B.1ORCID,Millard Salomon M.1ORCID,Kanfer Frans H. J.1ORCID

Affiliation:

1. Department of Statistics, University of Pretoria, Pretoria 0002, South Africa

Abstract

Semi- and non-parametric mixture of normal regression models are a flexible class of mixture of regression models. These models assume that the component mixing proportions, regression functions and/or variances are non-parametric functions of the covariates. Among this class of models, the semi-parametric mixture of partially linear models (SPMPLMs) combine the desirable interpretability of a parametric model and the flexibility of a non-parametric model. However, local-likelihood estimation of the non-parametric term poses a computational challenge. Traditional EM optimisation of the local-likelihood functions is not appropriate due to the label-switching problem. Separately applying the EM algorithm on each local-likelihood function will likely result in non-smooth function estimates. This is because the local responsibilities calculated at the E-step of each local EM are not guaranteed to be aligned. To prevent this, the EM algorithm must be modified so that the same (global) responsibilities are used at each local M-step. In this paper, we propose a one-step backfitting EM-type algorithm to estimate the SPMPLMs and effectively address the label-switching problem. The proposed algorithm estimates the non-parametric term using each set of local responsibilities in turn and then incorporates a smoothing step to obtain the smoothest estimate. In addition, to reduce the computational burden imposed by the use of the partial-residuals estimator of the parametric term, we propose a plug-in estimator. The performance and practical usefulness of the proposed methods was tested using a simulated dataset and two real datasets, respectively. Our finite sample analysis revealed that the proposed methods are effective at solving the label-switching problem and producing reasonable and interpretable results in a reasonable amount of time.

Funder

South African National Research Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

1. A New Approach to Estimating Switching Regressions;Quandt;J. Am. Stat. Assoc.,1972

2. A Markov model for switching regressions;Goldfeld;J. Econom.,1973

3. Estimating mixtures of regressions;Hurn;J. Comput. Graph. Stat.,2003

4. Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models, Springer.

5. A maximum likelihood methodology for clusterwise linear regression;DeSarbo;J. Classif.,1988

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3