A Features-Based Privacy Preserving Assessment Model for Authentication of Internet of Medical Things (IoMT) Devices in Healthcare

Author:

Khan Habib Ullah1ORCID,Ali Yasir2,Khan Faheem3ORCID

Affiliation:

1. Department of Accounting and Information Systems, College of Business and Economics, Qatar University, Doha 2713, Qatar

2. Higher Education Department Khyber Pakhtunkhwa, Shahzeb Shaheed Government Degree College, Swabi 23430, Pakistan

3. Department of Computer Engineering, Gachon University, Seongnam-si 13120, Republic of Korea

Abstract

Internet of Things (IoT) devices have drawn significant attention over the last few years due to their significant contribution to every domain of life, but the major application of these devices has been witnessed in the healthcare sector. IoT devices have changed the complexion of healthcare set-up, however, the major limitation of such devices is susceptibility to many cyberattacks due to the use of embedded operating systems, the nature of communication, insufficient software updates, and the nature of backend resources. Similarly, they transfer a huge amount of sensitive data via sensors and actuators. Therefore, the security of Internet of Health Things (IoHT) devices remains a prime concern as these devices are prone to various cyberattacks, which can lead to compromising and violating the security of IoT devices. Therefore, IoT devices need to be authenticated before they join the network or communicate within a network, and the applied method of authentication must be robust and reliable. This authentication method has to be evaluated before being implemented for the authentication of IoT devices/equipment in a healthcare environment. In this study, an evaluation framework is introduced to provide a reliable and secure authentication mechanism based on authentication features. The proposed framework evaluates and selects the most appropriate authentication scheme/method based on evaluating authentication features using a hybrid multicriteria decision-making approach. It completes this in two steps: in the first step, the analytic hierarchy process (AHP) method is applied for assigning criteria weights; and in the second step, the technique for order preference by similarity to ideal solution (TOPSIS) approach selects the best authentication solution for IoHT devices based upon identified authentication features. This is the first attempt to present a features-based authentication model for selecting the improved authentication solution employed in IoHT devices.

Funder

Qatar National Library, Doha, Qatar

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emerging Trends and Challenges of IoT in Smart Healthcare Systems, Smart Cities and Education;Sensors;2024-09-04

2. NeuroHealth guardian: A novel hybrid approach for precision brain stroke prediction and healthcare analytics;Journal of Neuroscience Methods;2024-09

3. Artificial Intelligence-Enabled Internet of Medical Things (AIoMT) in Modern Healthcare Practices;Advances in Medical Technologies and Clinical Practice;2024-06-07

4. IoMT Future Trends and Challenges;Advances in Healthcare Information Systems and Administration;2024-05-17

5. IoT-Enabled Secure and Intelligent Smart Healthcare;Advances in Computational Intelligence and Robotics;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3