Door State Recognition Method for Wall Reconstruction from Scanned Scene in Point Clouds

Author:

Ning Xiaojuan12,Sun Zeqian1,Wang Lanlan1,Wang Man1,Lv Zhiyong1,Zhang Jiguang3ORCID,Wang Yinghui4

Affiliation:

1. College of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Shaanxi Key Laboratory of Network Computing and Security Technology, Xi’an 710048, China

3. National Laboratory of Pattern Recognition/National Laboratory of Multimodal Artificial Intelligence System, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

4. School of Artificial Intelligence and Computer Science, Jiangnan University, 1800 of Lihu Road, Wuxi 214122, China

Abstract

Doors are important elements of building façades in scanned point clouds. Accurate door detection is a critical step in building reconstruction and indoor navigation. However, recent door detection methods may often obtain incomplete information and can only detect doors with a single state (open or closed). To improve this, a door state recognition method is proposed based on corner detection and straight-line fitting. Firstly, plane segmentation based on local features is introduced to obtain structural division from the raw scanned data to extract the wall. Next, the bounding box of each plane is calculated to obtain the corner points, which is then combined with the feature constraint to classify the elements of door and wall. Then, the boundary of each plane is extracted by normal vector, and the disordered and discontinuous boundary points are straight-line fitted based on projection. Finally, the state of the door is obtained through analysis of the angle between the straight-lines of the wall and the door. The effectiveness of the proposed method is tested and evaluated on the Livingroom of ICL-NUIM and House of Room detection datasets. Furthermore, comparative experimental results indicate that our method can extract corner points and recognize the different states of doors effectively and robustly in different scenes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. INTERACTIVE CAPTURE AND LABELLING OF POINT CLOUDS WITH HOLOLENS2 FOR SEMANTIC SEGMENTATION;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3