Solar Radiation and Thermal Convection of Hybrid Nanofluids for the Optimization of Solar Collector

Author:

Mukhtar Safyan1,Gul Taza2ORCID

Affiliation:

1. Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia

2. Department of Mathematics, City University of Science and Information Technology, Peshawar 25000, Pakistan

Abstract

This study aims to show the role of the stagnation point flow in solar optimization in the presence of a Riga plate. This requirement is conceivable in the case of solar energy management with a suitable solar collector covering and visual thermal optimization. Solar energy radiation and thermal convection of glycol (C3H8O2)-based aluminum oxide (Al2O3) and copper (Cu) nanoparticles were used for a solar collector, and were studied in terms of the stagnation point flow theoretically. Stagnation refers to the state of a solar thermal system in which the flux varies in the collection loop to control the extra heating. The CVFEM code was used to analyze the flow in the case of represented stagnation using the FEA-Tools multiple physics software that manages partial derivative equations (PDEs). The streamlined patterns and energy contours for different cases were studied in detail. The transformation equations were treated with the numerical method (RK-4 technique) and showed strong agreement of the physical results corresponding to the initial conditions and boundaries. The results showed that hybrid nanofluids have the advanced capability to enhance the thermal performance of the base solvent and provide uniform distribution to the solar panel. The solar optimization and uniform thermal expansion results are displayed graphically.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3