Identification of Linear Time-Invariant Systems: A Least Squares of Orthogonal Distances Approach

Author:

Cantera-Cantera Luis Alberto1ORCID,Garrido Rubén2ORCID,Luna Luis3ORCID,Vargas-Jarillo Cristóbal2ORCID,Asiain Erick3ORCID

Affiliation:

1. Automation and Control Engineering Department, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Luis Enrique Erro s/n, Mexico City 07738, Mexico

2. Automatic Control Department, CINVESTAV-IPN, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico

3. Centro de Estudios Científicos y Tecnológicos No. 9, Instituto Politécnico Nacional, Mexico City 11400, Mexico

Abstract

This work describes the parameter identification of servo systems using the least squares of orthogonal distances method. The parameter identification problem was reconsidered as data fitting to a plane, which in turn corresponds to a nonlinear minimization problem. Three models of a servo system, having one, two, and three parameters, were experimentally identified using both the classic least squares and the least squares of orthogonal distances. The models with two and three parameters were identified through numerical routines. The servo system model with a single parameter only considered the input gain. In this particular case, the analytical conditions for finding the critical points and for determining the existence of a minimum were presented, and the estimate of the input gain was obtained by solving a simple quadratic equation whose coefficients depended on measured data. The results showed that as opposed to the least squares method, the least squares of orthogonal distances method experimentally produced consistent estimates without regard for the classic persistency-of-excitation condition. Moreover, the parameter estimates of the least squares of orthogonal distances method produced the best tracking performance when they were used to compute a trajectory-tracking controller.

Funder

Instituto Politécnico Nacional

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

1. Bard, Y. (1974). Nonlinear Parameter Estimation, Academic Press.

2. Englezos, P., and Kalogerakis, N. (2000). Applied Parameter Estimation for Chemical Engineers, CRC Press.

3. Sorenson, H.W. (1980). Parameter Estimation: Principles and Problems, M. Dekker.

4. System identification—A survey;Eykhoff;Automatica,1971

5. Ljung, L. (1999). System Identification: Theory for User, Prentice Hall.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3