A Moving Target Detection Model Inspired by Spatio-Temporal Information Accumulation of Avian Tectal Neurons

Author:

Huang Shuman1ORCID,Niu Xiaoke1ORCID,Wang Zhizhong1,Liu Gang1ORCID,Shi Li12

Affiliation:

1. Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Department of Automation, Tsinghua University, Beijing 100084, China

Abstract

Moving target detection in cluttered backgrounds is always considered a challenging problem for artificial visual systems, but it is an innate instinct of many animal species, especially the avian. It has been reported that spatio-temporal information accumulation computation may contribute to the high efficiency and sensitivity of avian tectal neurons in detecting moving targets. However, its functional roles for moving target detection are not clear. Here we established a novel computational model for detecting moving targets. The proposed model mainly consists of three layers: retina layer, superficial layers of optic tectum, and intermediate-deep layers of optic tectum; in the last of which motion information would be enhanced by the accumulation process. The validity and reliability of this model were tested on synthetic videos and natural scenes. Compared to EMD, without the process of information accumulation, this model satisfactorily reproduces the characteristics of tectal response. Furthermore, experimental results showed the proposed model has significant improvements over existing models (EMD, DSTMD, and STMD plus) on STNS and RIST datasets. These findings do not only contribute to the understanding of the complicated processing of visual motion in avians, but also further provide a potential solution for detecting moving targets against cluttered environments.

Funder

National Natural Science Foundation of China

Henan Provincial Key R&D and Promotion Special Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3