A Multi-Factor Selection and Fusion Method through the CNN-LSTM Network for Dynamic Price Forecasting

Author:

Liu Yishun1,Yang Chunhua1,Huang Keke1,Liu Weiping1

Affiliation:

1. School of Automation, Central South University, Changsha 410083, China

Abstract

Commodity prices are important factors for investment management and policy-making, and price forecasting can help in making better business decisions. Due to the complex and volatile nature of the market, commodity prices tend to change frequently and fluctuate violently, often influenced by many potential factors with strong nonstationary and nonlinear characteristics. Thus, it is difficult to obtain satisfactory prediction effects by only using the historical data of prices individually. To address this problem, a novel dynamic price forecasting method based on multi-factor selection and fusion with CNN-LSTM is proposed. First, the factors related to commodity price are collected, and Granger causality inference is used to identify causal factors that affect the commodity price. Then, XGBoost is used to evaluate the importance of the remaining factors and screen out critical factors to reduce the interference of redundant information. Due to the high amount and complicated changes of the selected factors, a convolutional neural network is employed to fuse the selected factors and extract the hidden features. Finally, a long short-term memory network is adopted to establish a multi-input predictor to obtain the dynamic price. Compared with several advanced approaches, the evaluation results indicate that the proposed method has an excellent performance in dynamic price forecasting.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Shandong Key Laboratory of Industrial Control Technology

Fundamental Research Funds from the Central Universities of Central South University

Science and Technology Innovation Program of Hunan Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Based Techniques for Workload Prediction in Serverless Environments;2023 International Conference on Electrical, Electronics, Communication and Computers (ELEXCOM);2023-08-26

2. A novel deep learning-based hybrid Harris hawks with sine cosine approach for credit card fraud detection;AIMS Mathematics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3