Sound Event Detection in Domestic Environment Using Frequency-Dynamic Convolution and Local Attention

Author:

Cheimariotis Grigorios-Aris1,Mitianoudis Nikolaos1ORCID

Affiliation:

1. Electrical and Computer Engineering Department, Democritus University of Thrace, 67100 Xanthi, Greece

Abstract

This work describes a methodology for sound event detection in domestic environments. Efficient solutions in this task can support the autonomous living of the elderly. The methodology deals with the “Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE)” 2023, and more specifically with Task 4a “Sound event detection of domestic activities”. This task involves the detection of 10 common events in domestic environments in 10 s sound clips. The events may have arbitrary duration in the 10 s clip. The main components of the methodology are data augmentation on mel-spectrograms that represent the sound clips, feature extraction by passing spectrograms through a frequency-dynamic convolution network with an extra attention module in sequence with each convolution, concatenation of these features with BEATs embeddings, and use of BiGRU for sequence modeling. Also, a mean teacher model is employed for leveraging unlabeled data. This research focuses on the effect of data augmentation techniques, of the feature extraction models, and on self-supervised learning. The main contribution is the proposed feature extraction model, which uses weighted attention on frequency in each convolution, combined in sequence with a local attention module adopted by computer vision. The proposed system features promising and robust performance.

Funder

Greece and the European Union

Publisher

MDPI AG

Subject

Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3