Neural Network Applications in Polygraph Scoring—A Scoping Review

Author:

Rad Dana12ORCID,Paraschiv Nicolae1,Kiss Csaba3

Affiliation:

1. Doctoral School of Systems Engineering, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania

2. Center of Research Development and Innovation in Psychology, Faculty of Educational Sciences Psychology and Social Work, Aurel Vlaicu University of Arad, 310032 Arad, Romania

3. Faculty of Psychology and Educational Sciences, Hyperion University of Bucharest, 030615 Bucharest, Romania

Abstract

Polygraph tests have been used for many years as a means of detecting deception, but their accuracy has been the subject of much debate. In recent years, researchers have explored the use of neural networks in polygraph scoring to improve the accuracy of deception detection. The purpose of this scoping review is to offer a comprehensive overview of the existing research on the subject of neural network applications in scoring polygraph tests. A total of 57 relevant papers were identified and analyzed for this review. The papers were examined for their research focus, methodology, results, and conclusions. The scoping review found that neural networks have shown promise in improving the accuracy of polygraph tests, with some studies reporting significant improvements over traditional methods. However, further research is needed to validate these findings and to determine the most effective ways of integrating neural networks into polygraph testing. The scoping review concludes with a discussion of the current state of the field and suggestions for future research directions.

Publisher

MDPI AG

Subject

Information Systems

Reference71 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Training on dirty labels: Rejoinder to Kotsoglou and Biedermann;Forensic Science International: Synergy;2024

2. Machine Learning for Smart School Selection and Admissions;2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM);2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3