Top-Down Models across CPU Architectures: Applicability and Comparison in a High-Performance Computing Environment

Author:

Banchelli Fabio1ORCID,Garcia-Gasulla Marta1ORCID,Mantovani Filippo1ORCID

Affiliation:

1. Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain

Abstract

Top-Down models are defined by hardware architects to provide information on the utilization of different hardware components. The target is to isolate the users from the complexity of the hardware architecture while giving them insight into how efficiently the code uses the resources. In this paper, we explore the applicability of four Top-Down models defined for different hardware architectures powering state-of-the-art HPC clusters (Intel Skylake, Fujitsu A64FX, IBM Power9, and Huawei Kunpeng 920) and propose a model for AMD Zen 2. We study a parallel CFD code used for scientific production to compare these five Top-Down models. We evaluate the level of insight achieved, the clarity of the information, the ease of use, and the conclusions each allows us to reach. Our study indicates that the Top-Down model makes it very difficult for a performance analyst to spot inefficiencies in complex scientific codes without delving deep into micro-architecture details.

Publisher

MDPI AG

Subject

Information Systems

Reference17 articles.

1. (2022, November 01). Top500 List. Available online: https://www.top500.org/lists/top500/2022/11/.

2. Roofline: An Insightful Visual Performance Model for Multicore Architectures;Williams;Commun. ACM,2009

3. Ofenbeck, G., Steinmann, R., Caparros, V., Spampinato, D.G., and Püschel, M. (2014, January 23–25). Applying the roofline model. Proceedings of the 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Monterey, CA, USA.

4. Cache-aware Roofline model: Upgrading the loft;Ilic;IEEE Comput. Archit. Lett.,2014

5. Banchelli, F., Garcia-Gasulla, M., Houzeaux, G., and Mantovani, F. (July, January 29). Benchmarking of State-of-the-Art HPC Clusters with a Production CFD Code. Proceedings of the Platform for Advanced Scientific Computing Conference, Geneva, Switzerland.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Analysis of Kunpeng 920 on HPC Workloads;Proceedings of the 2024 8th International Conference on High Performance Compilation, Computing and Communications;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3