ECG-Based Driving Fatigue Detection Using Heart Rate Variability Analysis with Mutual Information

Author:

Halomoan Junartho1,Ramli Kalamullah1ORCID,Sudiana Dodi1ORCID,Gunawan Teddy Surya23ORCID,Salman Muhammad1

Affiliation:

1. Department of Electrical Engineering, Universitas Indonesia, Depok 16424, Indonesia

2. Department of Electrical and Computer Engineering, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia

3. School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia

Abstract

One of the WHO’s strategies to reduce road traffic injuries and fatalities is to enhance vehicle safety. Driving fatigue detection can be used to increase vehicle safety. Our previous study developed an ECG-based driving fatigue detection framework with AdaBoost, producing a high cross-validated accuracy of 98.82% and a testing accuracy of 81.82%; however, the study did not consider the driver’s cognitive state related to fatigue and redundant features in the classification model. In this paper, we propose developments in the feature extraction and feature selection phases in the driving fatigue detection framework. For feature extraction, we employ heart rate fragmentation to extract non-linear features to analyze the driver’s cognitive status. These features are combined with features obtained from heart rate variability analysis in the time, frequency, and non-linear domains. In feature selection, we employ mutual information to filter redundant features. To find the number of selected features with the best model performance, we carried out 28 combination experiments consisting of 7 possible selected features out of 58 features and 4 ensemble learnings. The results of the experiments show that the random forest algorithm with 44 selected features produced the best model performance testing accuracy of 95.45%, with cross-validated accuracy of 98.65%.

Funder

Hibah Publikasi Terindeks Internasional (PUTI) Q2 Scheme

Publisher

MDPI AG

Subject

Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictions of Undesirable Behaviors While Driving Part 2;2024 5th Technology Innovation Management and Engineering Science International Conference (TIMES-iCON);2024-06-19

2. Time Series Feature Selection Method Based on Mutual Information;Applied Sciences;2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3