Depth-Enhanced Holographic Super Multi-View Maxwellian Display Based on Variable Filter Aperture

Author:

Tu Kefeng12,Chen Qiyang12,Wang Zi12,Lv Guoqiang2,Feng Qibin12

Affiliation:

1. School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China

2. National Engineering Laboratory of Special Display Technology, National Key Laboratory of Advanced Display Technology, Academy of Photoelectric Technology, Hefei University of Technology, Hefei 230009, China

Abstract

The super multi-view (SMV) near-eye display (NED) effectively provides depth cues for three-dimensional (3D) displays by projecting multiple viewpoint images or parallax images onto the retina simultaneously. Previous SMV NED suffers from a limited depth of field (DOF) due to the fixed image plane. Aperture filtering is widely used to enhance the DOF; however, an invariably sized aperture may have opposite effects on objects with different reconstruction depths. In this paper, a holographic SMV display based on the variable filter aperture is proposed to enhance the DOF. In parallax image acquisition, multiple groups of parallax images, each group recording a part of the 3D scene on a fixed depth range, are captured first. In the hologram calculation, each group of wavefronts at the image recording plane (IRP) is calculated by multiplying the parallax images with the corresponding spherical wave phase. Then, they are propagated to the pupil plane and multiplied by the corresponding aperture filter function. The size of the filter aperture is variable which is determined by the depth of the object. Finally, the complex amplitudes at the pupil plane are back-propagated to the holographic plane and added together to form the DOF-enhanced hologram. Simulation and experimental results verify the proposed method could improve the DOF of holographic SMV display, which will contribute to the application of 3D NED.

Funder

the National Natural Science Foundation of China

Major Science and Technology Projects in Anhui Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VAC-free near-eye display with thin form factor;Optics Communications;2024-07

2. Radiance-field holography for high-quality 3D reconstruction;Optics and Lasers in Engineering;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3