Abstract
Here we propose an online method to explore the multiway nature of urban spaces data for outlier detection based on higher-order singular value tensor decomposition. Our proposal has two sequential steps: (i) the offline modeling step, where we model the outliers detection problem as a system; and (ii) the online modeling step, where the projection distance of each data vector is decomposed by a multidimensional method as new data arrives and an outlier statistical index is calculated. We used real data gathered and streamed by urban sensors from three cities in Finland, chosen during a continuous time interval: Helsinki, Tuusula, and Lohja. The results showed greater efficiency for the online method of detection of outliers when compared to the offline approach, in terms of accuracy between a range of 8.5% to 10% gain. We observed that online detection of outliers from real-time monitoring through the sliding window becomes a more adequate approach once it achieves better accuracy.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. FIST-HOSVD;Proceedings of the Platform for Advanced Scientific Computing Conference;2022-06-27