Double-Swing Spring Origami Triboelectric Nanogenerators for Self-Powered Ocean Monitoring

Author:

Du Xinru1ORCID,Zhang Hao2,Cao Hao134,Hao Zewei1,Nakashima Takuji1ORCID,Tanaka Yoshikazu1,Jiao Pengcheng25,Mutsuda Hidemi1ORCID

Affiliation:

1. School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8527, Japan

2. Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China

3. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

4. Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China

5. Engineering Research Center of Oceanic Sensing Technology and Equipment, Zhejiang University, Ministry of Education, Hangzhou 310058, China

Abstract

Coastal areas often experience high population density and intense human activity owing to the considerable value of the ocean. Therefore, devices for monitoring marine disasters are crucial for ensuring the safety of human life. Herein, we develop hemispherical spring origami (SO) triboelectric nanogenerators (TENGs) (HSO-TENGs) for self-powered ocean wave monitoring. Optimization is performed using two approaches. First, swing machine experiments are conducted to investigate the monitoring performance of the HSO-TENGs regarding wave height and period with satisfactory accuracy. To increase power generation and monitoring accuracy, the internal inertia and centroid of gravity of the HSO-TENGs are optimized with respect to the structural parameters (i.e., magnet weight, hammer height, and external swing arm length). Second, numerical simulations are performed using the smoothed-particle hydrodynamics (SPH) method to determine the most suitable fixed condition for the HSO-TENGs for sensing wave changes. Subsequently, wave tank experiments are conducted on the HSO-TENGs to determine their ability to sense wave height, period, frequency, and direction. Tests related to supplying other sensors are also conducted. Eventually, the ability of the HSO-TENGs to monitor wave direction and spreading parameters is investigated in a numerical SPH circular wave tank. The results prove that the optimized HSO-TENGs can achieve powering and sensing through the same device.

Funder

Key-Area Research and Development Program of Guangdong Province

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3