Numerical Research on Leakage Characteristics of Pure Hydrogen/Hydrogen-Blended Natural Gas in Medium- and Low-Pressure Buried Pipelines

Author:

Li Jiadong1,Xie Bingchuan1,Gong Liang1

Affiliation:

1. College of New Energy, China University of Petroleum (East China), Qingdao 266580, China

Abstract

To investigate the leakage characteristics of pure hydrogen and hydrogen-blended natural gas in medium- and low-pressure buried pipelines, this study establishes a three-dimensional leakage model based on Computational Fluid Dynamics (CFD). The leakage characteristics in terms of pressure, velocity, and concentration distribution are obtained, and the effects of operational parameters, ground hardening degree, and leakage parameters on hydrogen diffusion characteristics are analyzed. The results show that the first dangerous time (FDT) for hydrogen leakage is substantially shorter than for natural gas, emphasizing the need for timely leak detection and response. Increasing the hydrogen blending ratio accelerates the diffusion process and decreases the FDT, posing greater risks for pipeline safety. The influence of soil hardening on gas diffusion is also examined, revealing that harder soils can restrict gas dispersion, thereby increasing localized concentrations. Additionally, the relationship between gas leakage time and distance is determined, aiding in the optimal placement of gas sensors and prediction of leakage timing. To ensure the safe operation of hydrogen-blended natural gas pipelines, practical recommendations include optimizing pipeline operating conditions, improving leak detection systems, increasing pipeline burial depth, and selecting materials with higher resistance to hydrogen embrittlement. These measures can mitigate risks associated with hydrogen leakage and enhance the overall safety of the pipeline infrastructure.

Funder

National Key R&D Program of China

China Postdoctoral Science Foundation

Natural Science Foundation of Shandong Province

Qingdao Postdoctoral Application Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3