Modeling and Simulation of Distribution Networks with High Renewable Penetration in Open-Source Software: QGIS and OpenDSS

Author:

De-Jesús-Grullón Ramón E.1ORCID,Batista Jorge Rafael Omar1ORCID,Espinal Serrata Abraham1ORCID,Bueno Díaz Justin Eladio1,Pichardo Estévez Juan José1,Guerrero-Rodríguez Nestor Francisco1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros 51000, Dominican Republic

Abstract

There are important challenges in modeling large electrical distribution circuits, especially with the presence of distributed renewable generation. Constructing simulations to assess the effect of the penetration of distributed generation on electrical distribution networks has become of great importance for Distribution Network Operators (DNOs). This paper proposes a simulation strategy based on open-source platforms and the integration of scripting tools for the rapid modeling of large-scale electrical distribution circuits with distributed renewable generation. The implementation is based on the adaptation of a tool called QGIS2OpenDSS, which creates OpenDSS distribution network models directly from an open-source geographic information system, QGIS. The plugin’s capabilities are demonstrated using a real distribution feeder with more than 60% penetration of renewable generation based on photovoltaic systems. These simulations are carried out using real data from a circuit provided by a DNO in the Dominican Republic, which is used to demonstrate how this approach provides a more accessible and flexible way to simulate and assess the effect of Distributed Energy Resources (DERs) in medium voltage (MV) and low voltage (LV) networks, enabling utilities to evaluate system performance and identify potential issues. The integration of this open-source tool within the DNO software stack enables users to apply it according to specific project needs, enhancing their capability to analyze and manage high DER penetration levels, aiding in better planning, operation, and decision-making processes related to renewable energy projects.

Funder

United States Agency for International Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3