Experimental Study of Forced Imbibition in Tight Reservoirs Based on Nuclear Magnetic Resonance under High-Pressure Conditions

Author:

Li Xiaoshan1,Yang Liu2ORCID,Sun Dezhi3,Ling Bingjian3,Wang Suling4

Affiliation:

1. Research Institute of Exploration and Development, Xinjiang Oilfield Company, PetroChina, Karamay 834000, China

2. State Key Laboratory for Tunnel Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

3. China Railway Tianjin Metro, Tianjin 300450, China

4. School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China

Abstract

This study utilizes nuclear magnetic resonance (NMR) techniques to monitor complex microstructures and fluid transport, systematically examining fluid distribution and migration during pressure imbibition. The results indicate that increased applied pressure primarily affects micropores and small pores during the initial imbibition stage, enhancing the overall imbibition rate and oil recovery. Higher capillary pressure in the pores strengthens the imbibition ability, with water initially displacing oil from smaller pores. Natural microfractures allow water to preferentially enter and displace oil, thereby reducing oil recovery from these pores. Additionally, clay minerals may induce fracture expansion, facilitating oil flow into the expanding space. This study provides new insights into fluid distribution and migration during pressure imbibition, offering implications for improved oil production in tight reservoirs.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3