Reduced-Parameter YOLO-like Object Detector Oriented to Resource-Constrained Platform

Author:

Zheng Xianbin1ORCID,He Tian1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China

Abstract

Deep learning-based target detectors are in demand for a wide range of applications, often in areas such as robotics and the automotive industry. The high computational requirements of deep learning severely limit its ability to be deployed on resource-constrained and energy-first devices. To address this problem, we propose a class YOLO target detection algorithm and deploy it to an FPGA platform. Based on the FPGA platform, we can make full use of its computational features of parallel computing, and the computational units such as convolution, pooling and Concat layers in the model can be accelerated for inference.To enable our algorithm to run efficiently on FPGAs, we quantized the model and wrote the corresponding hardware operators based on the model units. The proposed object detection accelerator has been implemented and verified on the Xilinx ZYNQ platform. Experimental results show that the detection accuracy of the algorithm model is comparable to that of common algorithms, and the power consumption is much lower than that of the CPU and GPU. After deployment, the accelerator has a fast inference speed and is suitable for deployment on mobile devices to detect the surrounding environment.

Funder

National Defense Science and Technology Innovation Zone Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation and Optimization of LeNet-5 Model for Handwritten Digits Recognition on FPGAs using Brevitas and FINN;2023 Innovations in Intelligent Systems and Applications Conference (ASYU);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3