Surface Wildfire Regime and Simulation-Based Wildfire Exposure in the Golestan National Park, NE Iran

Author:

Jahdi Roghayeh12ORCID,Bacciu Valentina2,Salis Michele2ORCID,Del Giudice Liliana2ORCID,Cerdà Artemi3ORCID

Affiliation:

1. Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran

2. National Research Council of Italy, Institute of BioEconomy (CNR IBE), 07100 Sassari, Italy

3. Soil Erosion and Degradation Research Group, Department of Geography, Valencia University, Blasco Ibàñez, 28, 46010 Valencia, Spain

Abstract

This research analyzes the spatiotemporal patterns of wildfire regime attributes (e.g., seasonality, size, frequency, and burn rate) across the Golestan National Park (GNP), northeast Iran over the last two decades. We used a variety of data, including existing vegetation data, current vegetation survey, and historical wildfire data, and then data were processed through ArcMap. We also predicted fire exposure profiles (burn probability (BP), conditional flame length (CFL (m)), and fire size (FS (ha)) by the application of the minimum travel time (MTT) fire spread algorithm. The kernel density estimation (KDE) method was used to estimate wildfire likelihood, based on recent wildfires (2000–2020) that occurred in the GNP. Finally, we developed a logistic regression model to investigate how independent variables such as weather, fuel, and topographic data influence wildfires in the park. Wildfires in the landscape have not been constant in either space or time. Their extent, seasonality, frequency, and other wildfire regime characters varied considerably across the landscape. Our results highlighted that shrublands in the southern part of the park showed, in general, the highest values in terms of the wildfire regime attributes. Large fires (10–100 ha, 51%) and very large fires (>100 ha, 24%), fire intervals greater than 10 years (90%), and high burn rates (>1% y−1, 35%) are all characteristics that contribute to high wildfire activity in shrublands. Similarly, areas predicted to have high wildfire exposure levels (average BP = 0.004; average CFL = 1.60 m; average FS = 840 ha) are found in the fuel models of high-load grass and medium-load shrub. Finally, the regression model results revealed that weather and fuel were the most influential parameters (R2 ≥ 0.2), while topography had comparatively less influence in the study area. In light of these results, we suggest proactively incorporating this information into fire and fuel management which can help develop a fire prevention plan, predict fire ignition probability and frequency, and finally address altered fire regimes threatening the park.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3