A Comparison of Four Spatial Interpolation Methods for Modeling Fine-Scale Surface Fuel Load in a Mixed Conifer Forest with Complex Terrain

Author:

Hoffman Chad M.1,Ziegler Justin P.2,Tinkham Wade T.3ORCID,Hiers John Kevin4,Hudak Andrew T.5ORCID

Affiliation:

1. Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO 80523, USA

2. Aster Global Environmental Solutions, Inc., North Lawrence, OH 44666, USA

3. USDA Forest Service Rocky Mountain Research Station, Fort Collins, CO 80526, USA

4. Natural Resource Institute, Texas A&M University, Washington, DC 20006, USA

5. USDA Forest Service Rocky Mountain Research Station, Moscow, ID 83843, USA

Abstract

Patterns of spatial heterogeneity in forests and other fire-prone ecosystems are increasingly recognized as critical for predicting fire behavior and subsequent fire effects. Given the difficulty in sampling continuous spatial patterns across scales, statistical approaches are common to scale from plot to landscapes. This study compared the performance of four spatial interpolation methods (SIM) for mapping fine-scale fuel loads: classification (CL), multiple linear regression (LR), ordinary kriging (OK), and regression kriging (RK). These methods represent commonly used SIMs and demonstrate a diversity of non-geostatistical, geostatistical, and hybrid approaches. Models were developed for a 17.6-hectare site using a combination of metrics derived from spatially mapped trees, surface fuels sampled with an intensive network of photoload plots, and topographic variables. The results of this comparison indicate that all estimates produced unbiased spatial predictions. Regression kriging outperformed the other approaches that either relied solely on interpolation from point observations or regression-based approaches using auxiliary information for developing fine-scale surface fuel maps. While our analysis found that surface fuel loading was correlated with species composition, forest structure, and topography, the relationships were relatively weak, indicating that other variables and spatial interactions could significantly improve surface fuel mapping.

Funder

Hoffman SERDP Project

McIntire Stennis

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3