Toward the Personalization of Biceps Fatigue Detection Model for Gym Activity: An Approach to Utilize Wearables’ Data from the Crowd

Author:

Elshafei MohamedORCID,Costa Diego EliasORCID,Shihab Emad

Abstract

Nowadays, wearables-based Human Activity Recognition (HAR) systems represent a modern, robust, and lightweight solution to monitor athlete performance. However, user data variability is a problem that may hinder the performance of HAR systems, especially the cross-subject HAR models. Such a problem may have a lesser effect on the subject-specific model because it is a tailored model that serves a specific user; hence, data variability is usually low, and performance is often high. However, such a performance comes with a high cost in data collection and processing per user. Therefore, in this work, we present a personalized model that achieves higher performance than the cross-subject model while maintaining a lower data cost than the subject-specific model. Our personalization approach sources data from the crowd based on similarity scores computed between the test subject and the individuals in the crowd. Our dataset consists of 3750 concentration curl repetitions from 25 volunteers with ages and BMI ranging between 20–46 and 24–46, respectively. We compute 11 hand-crafted features and train 2 personalized AdaBoost models, Decision Tree (AdaBoost-DT) and Artificial Neural Networks (AdaBoost-ANN), using data from whom the test subject shares similar physical and single traits. Our findings show that the AdaBoost-DT model outperforms the cross-subject-DT model by 5.89%, while the AdaBoost-ANN model outperforms the cross-subject-ANN model by 3.38%. On the other hand, at 50.0% less of the test subject’s data consumption, our AdaBoost-DT model outperforms the subject-specific-DT model by 16%, while the AdaBoost-ANN model outperforms the subject-specific-ANN model by 10.33%. Yet, the subject-specific models achieve the best performances at 100% of the test subjects’ data consumption.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Driven Approach for Upper Limb Fatigue Estimation Based on Wearable Sensors;Sensors;2023-11-20

2. sRPE and ACWR to Control Fatigue Levels and Minimize Injuries in Performance Sports;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

3. Sweat Analysis-Based Fatigue Monitoring during Construction Rebar Bending Tasks;Journal of Construction Engineering and Management;2023-09

4. DeepHAR: a deep feed-forward neural network algorithm for smart insole-based human activity recognition;Neural Computing and Applications;2023-03-15

5. Kinect-Based Evaluation of Severity of Facial Paresis: Pilot Study;Software Engineering Application in Systems Design;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3