Chitosan Nanoparticles Production: Optimization of Physical Parameters, Biochemical Characterization, and Stability upon Storage

Author:

Costa Eduardo M.1ORCID,Silva Sara1ORCID,Pintado Manuela1

Affiliation:

1. Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal

Abstract

Ionic gelation is among the simplest processes for the development of chitosan nanoparticles reported so far in the literature. Its one-shot synthesis process in conjunction with the mild reaction conditions required are among the main causes for its success. In this work, we sought to optimize a set of physical parameters associated with the ionic gelation process at two different pH values. Following that, the NPs’ freeze-drying and long-term storage stability were assayed, and their biocompatibility with HaCat cells was evaluated. The results show that NPs were more homogenously produced at pH 5, and that at this pH value, it was possible to obtain a set of optimum production conditions. Furthermore, of the assayed parameters, TPP addition time and overall reaction time were the parameters which had a significant impact on the produced NPs. Nanoparticle freeze-drying led to particle aggregation, and, of the cryoprotectants, assayed mannitol at 10% (w/v) presented the best performance, as the NPs were stable to freeze-drying and maintained their size and charge in the long-term stability assay. Lastly, the chitosan NPs presented no toxicity towards the HaCat cell line.

Funder

FUNDAÇÃO PARA A CIENCIA E A TECNOLOGIA

E.M. Costa’s PhD fellowship

QREN-ANI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3