Monte Carlo Investigation of Gamma Radiation Shielding Features for Bi2O3/Epoxy Composites

Author:

Mahmoud Karem G.1ORCID,Sayyed M. I.23,Almuqrin Aljawhara H.4,Arayro Jack5ORCID,Maghrbi Yasser6ORCID

Affiliation:

1. Department of Nuclear Power Plants and Renewable Energy, Ural Energy Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia

2. Department of Physics, Faculty of Science, Isra University, Amman 11622, Jordan

3. Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia

4. Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

5. College of Engineering and Technology, American University of the Middle East, Eqaila 54200, Kuwait

6. University of Tunis El Manar, Tunis 2092, Tunisia

Abstract

Three different samples were synthesized based on polyepoxide resin, a solidifying agent, and a Bi2O3 doping compound. The polyepoxide resin and solidifying agent were added in a 2:1 ratio by weight and the Bi2O3 compound was added in ratios of 0, 5, and 10 wt. %. The density of the synthesized composites was measured using an MH-300A densimeter with an uncertainty in measurement of 0.001 g/cm3. The measurements showed that the density of the fabricated composite varied from 1.103 g/cm3 to 1.20 g/cm3 when the reinforcing Bi2O3 compound was raised from 0 wt. % to 10 wt. %. Furthermore, the γ-ray shielding parameters were evaluated based on the simulated mean track length of γ-photons inside the synthesized composites using MCNP-5 code. The simulated results show an enhancement in the shielding parameter when increasing the Bi2O3 concentration, where the linear attenuation coefficient values increased from 0.101 cm−1 to 0.118 cm−1 as the Bi2O3 concentration increased from 0 to 10 wt. %. The increase in the LAC has a positive effect on the other shielding properties.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3