Point Cloud Repair Method via Convex Set Theory

Author:

Dong Tianzhen1,Zhang Yi1ORCID,Li Mengying1,Bai Yuntao1

Affiliation:

1. Visual Intelligence Perception Laboratory, School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Abstract

The point cloud is the basis for 3D object surface reconstruction. An incomplete point cloud significantly reduces the accuracy of downstream work such as 3D object reconstruction and recognition. Therefore, point-cloud repair is indispensable work. However, the original shape of the point cloud is difficult to restore due to the uncertainty of the position of the new filling point. Considering the advantages of the convex set in dealing with uncertainty problems, we propose a point-cloud repair method via a convex set that transforms a point-cloud repair problem into a construction problem of the convex set. The core idea of the proposed method is to discretize the hole boundary area into multiple subunits and add new 3D points to the specific subunit according to the construction properties of the convex set. Specific subunits must be located in the hole area. For the selection of the specific subunit, we introduced Markov random fields (MRF) to transform them into the maximal a posteriori (MAP) estimation problem of random field labels. Variational inference was used to approximate MAP and calculate the specific subunit that needed to add new points. Our method iteratively selects specific subunits and adds new filling points. With the increasing number of iterations, the specific subunits gradually move to the center of the hole region until the hole is completely repaired. The quantitative and qualitative results of the experiments demonstrate that our method was superior to the compared method.

Funder

Shanghai Alliance Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Approach for Repairing Unsegmented Liver Vascular Images based on Centerline;Proceedings of the 2023 8th International Conference on Biomedical Imaging, Signal Processing;2023-10-20

2. Development of an Autonomous Robot Replenishment System for Convenience Stores;Electronics;2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3