ATICVis: A Visual Analytics System for Asymmetric Transformer Models Interpretation and Comparison

Author:

Wu Jian-Lin1,Chang Pei-Chen1,Wang Chao1ORCID,Wang Ko-Chih1ORCID

Affiliation:

1. Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei 116, Taiwan

Abstract

In recent years, natural language processing (NLP) technology has made great progress. Models based on transformers have performed well in various natural language processing problems. However, a natural language task can be carried out by multiple different models with slightly different architectures, such as different numbers of layers and attention heads. In addition to quantitative indicators such as the basis for selecting models, many users also consider the language understanding ability of the model and the computing resources it requires. However, comparing and deeply analyzing two transformer-based models with different numbers of layers and attention heads are not easy because it lacks the inherent one-to-one match between models, so comparing models with different architectures is a crucial and challenging task when users train, select, or improve models for their NLP tasks. In this paper, we develop a visual analysis system to help machine learning experts deeply interpret and compare the pros and cons of asymmetric transformer-based models when the models are applied to a user’s target NLP task. We propose metrics to evaluate the similarity between layers or attention heads to help users to identify valuable layers and attention head combinations to compare. Our visual tool provides an interactive overview-to-detail framework for users to explore when and why models behave differently. In the use cases, users use our visual tool to find out and explain why a large model does not significantly outperform a small model and understand the linguistic features captured by layers and attention heads. The use cases and user feedback show that our tool can help people gain insight and facilitate model comparison tasks.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I. (2017, January 4–9). Attention is all you need. Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA.

2. Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv.

3. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., and Le, Q.V. (2019, January 8–14). Xlnet: Generalized autoregressive pretraining for language understanding. Proceedings of the 33rd Conference on Neural Information Processing Systems, Vancouver, BC, Canada.

4. Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving Language Understanding by Generative Pre-Training, OpenAI.

5. Language models are unsupervised multitask learners;Radford;OpenAI Blog,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3