Abstract
Soil heavy-metal pollution is one of the most important environmental problems in the world, and seriously endangers plant growth and human health. Microbial remediation has become a key technology in the field of soil heavy-metal remediation due to its advantages of being harmless, green and environmental. In this study, a fungus Penicillium spp. XK10 with high tolerance to cadmium (Cd) and antimony (Sb) was screened from mine slag, and its adsorption characteristics to heavy metals under different environmental conditions were studied. The results showed that at pH0 = 6, C0 (Cd) = 0.1 mM, and the adsorption time was 4 days, the maximum removal rate of cadmium by XK10 was 32.2%. Under the conditions of pH0 = 4, T = 7d, and the initial antimony concentration of 1 mM, the removal rate of antimony by XK10 was the highest, which was 15.5%. This study provides potential microbial materials for bioremediation of heavy metal-contaminated soils.
Funder
China Postdoctoral Science Foundation
Ministry of Agriculture and Rural Affairs
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献