AAL-Net: A Lightweight Detection Method for Road Surface Defects Based on Attention and Data Augmentation

Author:

Zhang Cheng1ORCID,Li Gang1ORCID,Zhang Zekai1ORCID,Shao Rui1ORCID,Li Min1ORCID,Han Delong1ORCID,Zhou Mingle1ORCID

Affiliation:

1. Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Abstract

The pothole is a common road defect that seriously affects traffic efficiency and personal safety. Road evaluation and maintenance and automatic driving take pothole detection as their main research part. In the above scenarios, accuracy and real-time pothole detection are the most important. However, the current pothole detection methods can not meet the accuracy and real-time requirements of pothole detection due to their multiple parameters and volume. To solve these problems, we first propose a lightweight one-stage object detection network, the AAL-Net. In the network, we design an LF (lightweight feature extraction) module and use the NAM (Normalization-based Attention Module) attention module to ensure the accuracy and real time of the pothole detection process. Secondly, we make our own pothole dataset for pothole detection. Finally, in order to simulate the real road scene, we design a data augmentation method to further improve the detection accuracy and robustness of the AAL-Net. The metrics F1 and GFLOPs show that our method is better than other deep learning models in the self-made dataset and the pothole600 dataset and can well meet the accuracy and real-time requirements of pothole detection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3